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Research Motivation

Overland sonic boom requirements challenge supersonic aircraft viability
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Aerodynamic shape optimization demonstrated with airframe tailoring to meet low-boom
perceived loudness goals

Drawbacks:

Recent experimental and computational research has shown introducing propulsion effects
into an optimized airframe pressure signature can compromise the low-boom requirement

*Wintzer, M. et. al., “Aircraft-Nozzle-Plume Interactions in the Context of Low Sonic Boom Design,” AIAA SciTech 2015.



Research Objectives

Mitigate plume-induced near field pressure disturbances
without compromising nozzle performance

Current

Approach:

Aerodynamic tailoring of the powered propulsive streamtube to minimize all

nearfield pressure contributions and simplify propulsion-airframe integration
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Problem Definition
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Solution Summary
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Cowl & Shroud Parameterization
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Initial and Deformed Cowl Shape

Annular bodies of
revolution

Characterized by inner
and outer surfaces

Centerline spline
(radial & axial DOF)

Thickness spline
(thickness DOF)
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Core and bypass entrance
flow areas held constant
for engine integration




Centerbody Parameterization
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Direct Geometric and Surface Grid Sensitivities @/

B-spline interpolants enabled the computation
of native analytic derivatives. Continuous
sensitivities mapped to the discrete grid
coordinates and provided to Fun3D.

i, Axial

Derivatives transformed to Cartesian coordinates
and provided with respect to control point axial,
radial, and thickness degrees of freedom

dy

E Derivatives verified using finite
i, Radial

difference and complex step




Adjoint-Based Grid Refinement
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* Fully unstructured 2-D and 3-D T-rex
viscous grid transitioning to isotropic
tets in farfield (y*<1)

Adjoint-Adapted Grid:

Adjoint-Adapted Grid * Adapted to minimize discretization
error of pressure integral extracted
one nozzle diameter from centerline

Baseline Grid MachNo.|| * 8 flow/adjoint adaptation cycles
?g e ~11.5 million nodes
e e Constraints used to control maximum
i anisotropy and grid size during
0 adaptation
10 e Consumed ~36-hrs on 600 cores

Adjoint-Adapted Grid




Volume Mesh Morphing

Surface deformations transferred to the
volume using a linear elastic approach

Adapted Baseline

Large Arbitrary Deformation

Young’s Modulus inversely proportional
to distance from nearest wall boundary.

Poisson’s ratio set uniformly to O.

Relatively robust for surface-normal
deformations on isotropic grids.

Less effective for high shear
deformations on adapted anisotropic

Deformed Baseline

grids.

Frequent interruption of design
optimization process with formation of
negative volume cells during

Large deformations compromise grid
resolution of critical flow features
and require re-adaptation

deformation step.

Grid quality deterioration over
subsequent deformation steps.




Adjoint-Based Design Optimization
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Adjoint-Based Design Optimization

Baseline vs. Optimized Nearfield Pressure Signatures
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Conclusions

Aerodynamic shape optimization demonstrated for
dual-stream supersonic plug nozzle to minimize
nearfield pressure waveforms




Conclusions

Intent is to optimize propulsive streamtube & reduce
plume effects on overall aircraft pressure signature

Could be used in conjunction with airframe shape optimization



Conclusions

New axisymmetric geometry parameterization
developed using 3 order B-splines and integrated
with FUN3D design optimization framework




Conclusions

Achieved notable reductions in over- and under-
pressure disturbances measured one diameter from
nozzle centerline




Conclusions

No compromise to nozzle performance
requirement on thrust during optimization



Future Work

* New adjoint thrust derivatives, allowing mass flow rates and thrust to be
constrained at optimizer level

« Open geometric bounds on control points to enable greater geometric
flexibility upstream of core & bypass throats (trade pressure & viscous forces)

« Consider propagated effects to ground observer

 Investigate alternate volume grid deformation approaches to minimize
production of negative volume cells

« Consider B-spline surface-based parameterization for extension to non-
axisymmetric engine components

« Opportunity for aggregate objective function including plug volume as a
surrogate for nozzle weight

« Preliminary studies indicate ~30% reduction in nozzle pressure disturbance
possible with ~4% thrust gain by varying BPR (engine cycle/nozzle coupling)
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